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We calculate the elastic response of thin films grafted to a solid substrate whose upper surface is subject to
a stress. This issue is addressed in the context of biological cell adhesion where adhesive junctions consist of
a thin layer of proteins grafted to the extracellular matrix and sheared by the cell contractility apparatus. We
show that the finite thickness of the layer limits stress-induced deformations to short ranges proportional to the
thickness of the film. In addition, we show that the attachment boundary condition creates an effective shear
response to surface stresses that couples all the directions, even for fluidlike layers. We predict that perturba-
tions with wavelengths of order of the film thickness induce resonancelike responses for isotropic rubberlike
materials or anisotropic media with high shear moduli. We use these results to predict the elastic deformations
of a layer of proteins under shear stress and propose that the resulting, polarized elastic response to local
surface forces can explain the observed, anisotropic growth of cell-substrate junctions when subject to external
stresses.
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I. INTRODUCTION

The transmission of stress in cells attached to a surface is
of crucial importance for the understanding of biological cell
adhesion on either a substrate or in a three-dimensional ma-
trix. Cell-matrix or cell-substrate adhesions(also called focal
contacts) are clusters of proteins that are able to dynamically
adjust both their size and shape to the applied stress[1–3]
(see Fig. 1). While the adhesive force is normal to the sub-
strate, the large-scale structure of focal contacts are strongly
influenced by lateral shear forces that occur in cells due to
the action of the elastic cytoskeleton on the protein clusters.
These lateral forces induce an anisotropic aggregation of ad-
ditional proteins and cause the aggregate to expand at the
front edge of the stressed region; this effect is independent of
the origin of the force(contractility of the cytoskeleton
within the cell, external forces such as shear flow[4], or
externally applied local forces[5]). The ability of the adhe-
sive junctions to respond to such forces allows the cell to
adapt its shape and function to the physical properties of the
substrate[6]; for example, this effect is responsible for the
migration of the cell to the most rigid regions of the substrate
[7–9]. Although the biochemistry of focal contacts is begin-
ning to be understood[10], the link between the mechanical
perturbation and the anisotropic biochemical response of the
contacts that causes the junctions to grow in the direction of
the force is still a mystery. Here, we propose that the cou-
pling of the mechanical and biochemical response has its
origin in the elastic deformations of the layer of proteins that
comprise the focal contact. When this layer is submitted to
an internal or external directional stress, there is a resulting,
anisotropic density change in the surrounding region that
strongly affects the further aggregation of proteins to the
focal contacts. We suggest that the physics presented here
may explain the observed anisotropic growth of cell-
substrate junctions that are subject to external stresses. The
detailed consequences of this elastic response for cell adhe-
sion will be discussed elsewhere[11].

The elastic response of thin films to surface stresses has
important implications in the context of the theory of elas-

ticity and its applications to grafted layers. Elastic deforma-
tions in bulk media give rise to long-range interactions[12]:
a local stress applied to ainfinite two-dimensional plate
causes a deformation that depends logarithmically on the dis-
tance from the stress. However, this long-range response is
strongly influenced by the boundary conditions[13]. For ex-
ample, the range of deformation is limited to the film thick-
ness in finite, elastic medium; the details depend on the vari-
ous boundary conditions on both surfaces. Here, we consider
a film that is composed of molecules tethered to the surface
as a model of cell-substrate adhesions. We predict how elas-
tic deformations are modified for such grafted layers whose
top surface is submitted to a stress and that several effects
arise as a result of the grafting boundary condition. The first
effect is the creation of a boundary condition-induced, effec-
tive, shear response to surface forces that exists even for
liquidlike layers such as amphiphilic or lipid monolayers. A
second major effect arises from the finite thickness of the
layer. Contrary to a semi-infinite elastic medium, the elastic
interactions are now short range with the range of the inter-
action of the order of the thickness. We predict that rubber-
like materials or anisotropic media with strong shear moduli
can respond in a “resonancelike” manner to perturbations at
certain wavelength determined by the film thickness and the
elastic properties of the material. Finally, we show that a
localized surface force results in an anisotropic, in-plane re-

FIG. 1. Schematic representation of a focal contact.
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sponse of the film, the anisotropy being similar to that of a
semi-infinite elastic medium. Systems with certain elastic
properties, such as a strong mechanical stiffness of the
grafted molecules, can lead to a directional perturbation that
is determined by the symmetry of the force. Such a direc-
tional response may explain why adsorbed proteins layers
involved in cell-substrate adhesions grow in an anisotropic
manner when subject to surface shear forces. Proteins out-
side the region where the force applies are stressed differ-
ently depending on their position relative to the stressed re-
gion: the local density is increased at the front edge while
decreased at the rear. This variation of the local density may
be a possible trigger for initiating localized biochemical re-
actions that affect the propensity of proteins to aggregate at
the front or the back with different probabilities. This effect
may be the physical origin of the observed anisotropic
growth of focal contacts upon application of internal or ex-
ternal stresses.

The following section of the paper introduces the elastic-
ity of thin films such as amphiphilic layers grafted to a sur-
face. By integrating over the elastic response in the direction
perpendicular to the film, we derive in Sec. III, the effective
response of the film to surface perturbations. We first treat
surface perturbations that vary in only one direction in the
plane of the film. The deformations due to surface stresses
that vary in two dimensions in the plane are treated in Sec.
IV, where we focus on the effective, in-plane shear modulus
induced by the boundary effects; an effective shear modulus
is predicted even for originally fluid thin films or monolay-
ers. We show that the anisotropy of grafted layers leads to a
polarized response to local surface forces which we propose
as a mechanism for the anisotropic growth of cell-substrate
junctions.

II. ELASTICITY OF A GRAFTED LAYER

Amphiphilic molecules in water assemble into monolay-
ers or thin films at water-air or water-oil interfaces. The
structure is fluid and there is no energy cost for shear defor-
mations of these thin films. The fluid layer is fully described
by its elastic moduli of compression:lxxxx, lyyyy, andlzzzz.
Anchoring the monolayer or thin film to a surface(whose
normal is in theẑ direction) results in an energy cost for
shear deformations in thex-z or y-z planes. This occurs even
though there is no intrinsic, solidlike order and is related to
the fact that the layer is not homogeneous in theẑ direction;
the shear tilts the molecules and changes their surroundings:
hydrophobic tails get closer to hydrophilic heads, leading to
an increase of the energy. Two sets of elastic moduli come
into play when such a grafted layer is sheared:lxzxz(or lyzyz)
related to the torque-induced shear, andlxxzz (or lyyzz) re-
lated to the compression-induced shear. No elastic coupling
exists betweenx and y when the layer is not anchored but
fluid. Tethering the layer to the surface does not change this
property and the layer still has a zero, in-plane, bulk shear
modulus:lxxyy=lxyxy=0. However, because of thex-z and
y-z shear modulus, fluid layers are inherently anisotropic.

We now write the elastic energy of such a grafted layer
that is isotropic in thex-y plane(C4v symmetry):

E =E dx dy dzFlxxxx

2
suxx

2 + uyy
2 d +

lzzzz

2
uzz

2

+ lxxzzsuxx + uyyduzz+ 2lxzxzsuxz
2 + uyz

2 dG . s1d

The elastic moduli include contributions from both energetic
interactions and entropy; in particular, the constantlzzzz
arises from the mechanical stiffness of the chainf14g. These
coefficients differ from the elastic properties of the bulk be-
cause the entropy of stretched chains at an interface is lower
than that of chains in the bulk solutionf15g. The system has
two shear modulilxzxzandlxxzzthat have opposite responses
to external stresses. The shear moduluslxzxzaccounts for the
energy associated with the deformation due to the torque
imposed by the shear force: high values oflxzxzgive rise to
a vertical compression of the layer at the front edge and an
expansion at the rear edge of the stressed zone. In contrast,
the shear moduluslxxzz is related to the compressibility of
the layer: a displacement in thex direction induces an excess
of material at the front and a depletion of material in the
back. Typical materials are isotropic and their elastic prop-
erties are defined by their Young modulusE and the Poisson
ratio n. The relationship between the modulili jkl and the
Young modulusE and the Poisson ration is f12g

lxxxx= lzzzz= lyyyy=
E

1 + n

1 − n

1 − 2n
,

lxzxz= lyzyz= lxyxy=
E

2s1 + nd
,

lxxzz= lyyzz= lxxyy=
E

1 + n

n

1 − 2n
. s2d

The Poisson ration usually ranges from 0.25 to 0.5. A Pois-
son ratio of 0.25 implies thatlxzxz=lxxzz. For values of the
Poisson ration.0.25,lxxzz.lxzxzand the shear induces an
excess of material(bump) at the edge of the stressed zone as
we expect from intuition. Some materials with special prop-
erties such as foams or fixed-connectivity membranes
[16,17] have negative Poisson ratios and therefore show
atypical response to shear such as a vertical compression in
front of the stressed zone and a bump at the rear.

III. DEFORMATION OF A GRAFTED FILM UNDER
SHEAR FORCE

An initially fluid layer grafted onto a surface responds to
small perturbations like an anisotropic elastic medium with
the elastic energy Eq.(1). We consider the important case
where the layer is grafted to the substrate on the bottom
plane(at z=0) and subject to a localize stress that acts on the
top plane(at z=h). We focus on the deformations on the
surface(at z=h). The gradients of these deformations are
proportional to the local surface density of the grafted mol-
ecules on the top of the layer. As detailed later on, the varia-
tion of the local density may be the relevant parameter that
determines the anisotropic aggregation of additional proteins
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in cell adhesion, leading to the growth of the focal contacts
in the direction of the applied force.

The deformation of a grafted layer cannot be understood
with the usual methods developed for two-dimensional films
[13]. The boundary conditions that apply in thez direction
are crucial to the determination of the elastic response of the
film, even to surface stresses, and the three-dimensional na-
ture of the finite layer must be considered. We now derive
the Green’s function for the response of such a layer. Most of
the interesting aspects of this problem can be understood by
focusingon a system where there are no variations of the
grafting conditions nor the applied surface stresses in they
direction. It is this case, with variations of the deformations
in only the thickness(z direction) and one surface direction
(thex direction), that is treated in this section. In Sec. IV we
treat the full problem with variations in both thex and y
directions and show that the grafted layer exhibits a novel
response to in-planex-y shear deformations. However, for
the sake of simplicity, we first focus on the case where there
are variations only inx andz.

We first demonstrate that the grafting condition strongly
modifies the usual long-range elastic interaction observed for
semi-infinite media[12] and introduces a finite cutoff related
to the film thickness and the elastic constants. We also point
out the unusual nature of the elastic energy for thin films and
explain the presence of terms that are independent of and
linear in the wave vector of the deformationq (in addition to
terms that are quadratic inq as in the bulk). We finally dis-
cuss the fact that large shear moduli can destabilize the layer
and gives rise to an unusually large response of the film to
perturbations with certain wavelengths determined by the
elastic properties of the material(resonancelike behavior).

The two-dimensional layer is grafted to the substrate at
z=0 and the top surface of the layer is atz=h. The elastic
energy for a system invariant iny is

E =E dxdzFlxxxx

2
uxx

2 +
lzzzz

2
uzz

2 + lxxzzuxxuzz+ 2lxzxzuxz
2 G ,

s3d

where the integral overz is from z=0 toz=h and the integral
overx extends to plus/minus infinity since we discuss layers
whose lateral extent is much larger than the range or size of
the surface stresses applied to the layer. This simple ap-
proach does not take into account the intrinsic anisotropy of
an originally fluid layer since we focus on deformations that
are invariant in they direction. A gel and a grafted layer
where tethered molecules are not entangled behave similarly
under such deformations, but have of course different values
for their elastic coefficients that correspond to the different
entropic response of each systemsf18g. The limit of an iso-
tropic elastic medium can be obtained in Eq.s3d by replacing
the elastic coefficientsli jkl by their relationships2d with the
Young modulusE and the Poisson ration. Results obtained
in this section are therefore completely general and are inde-
pendent of the elastic anisotropy of the film. The spatial
dependence of the deformation of the layer is given by mini-
mizing the energys3d subject to the boundary conditions

uWsx,0d = 0W ,

uWsx,hd = uWhsxd.

One thus obtains the deformation as a function of bothx and
z. The elastic energy is obtained by substituting the deforma-
tion that minimizes the energy into Eq.s3d. However, to
focus on the effects of surface stresses, it is very useful to
express the energy in terms of the surface displacementuWhsxd
only. To this end, we integrate the energy overz. The results
are best expressed in terms of the Fourier components of the
surface strainsuqk

h =uqkshd, defined by the Fourier transform

uksx,zd =
1

Î2p
E uqkszdeiqxdq.

Biologically relevant stresses have ranges of the order of
fractions of microns, much larger than the thickness of the
film which is typically in the nanometer range. We therefore
focus on the case of long-wavelength deformations and ex-
pand the energy tosecond order in the dimensionless, small
parameter that is the product of the wave vectorq and the
thicknessh and we obtain

E =E dq

2Î2p
FS l̃x

h
+ l̃x8 q2hDuuqx

h u2 + S l̃z

h
+ l̃z8 q2hDuuqz

h u2

+ l̃xz iq suqx
h ūqz

h − ūqx
h uqz

h dG . s4d

In this expression,ūqk
h is the complex conjugate of the com-

plex quantityuqk
h andl̃i j are the effective elastic coefficients

that result from the integration over the thickness:

l̃x = lxzxz, l̃x8 =
4lxxxxlzzzz− slxzxz+ lxxzzd2

12lzzzz
, s5d

l̃z = lzzzz, l̃z8 =
slxzxz− lxxzzds3lxzxz+ lxxzzd

12lxzxz
, s6d

l̃xz=
lxxzz− lxzxz

2
. s7d

Due to the grafting condition, the energy(4) includes a
term that is independent of the wave vectorq. This is be-
cause the finite film breaks the translational symmetry; shift-
ing the top of the layerdoescost energy and is similar to a

shear deformation, as confirmed by the value ofl̃x (5). An-
other important effect is the existence of a term proportional

to l̃xz that is linear in the wave vectorq. This term arises
from the finite distance(proportional to 1/q) that a surface
perturbation penetrates into the material. Thus, although
elastic energies usually depend quadratically onq, the effec-
tive thickness of the deformation region is proportional to
1/q; integration of the elastic energy q2 over the thickness
repack 1/q results in an effective surface elasticity that has a
term linear inq. Equation(7) also highlights the competition
between the two kinds of shear moduli previously discussed;
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the overall sign of the effective shear modulusl̃xz depends
on the relative contributions of each term.

When a forcefWsxd is applied on the top surface of the
layer atz=h, the elastic energy is augmented by a term

−E fWsxduWsx,hddx= −E dq

2Î2p
s f̄
W

quWq
h + fWqū

W
q
hd. s8d

The resulting deformation of the surface of the thin film is
related to the external stress by the Green’s tensorGsxd:

uisx,hd =
1

Î2p
E f jsx8dGijsx − x8ddx8. s9d

In Fourier space, within the approximationqh!1, the
Green’s tensor is written

Gq .
h

1 + q2,21
1

l̃x

l̃xz

l̃xl̃z

iqh

−
l̃xz

l̃xl̃z

iqh
1

l̃z

2 . s10d

In two dimensions, the response of the thin film to a highly
localized, delta function surface force is an exponential de-
cay with a range, that is determined by the elastic properties
of the material:

, = hÎ l̃xl̃z8 + l̃x8l̃z − l̃xz
2

l̃xl̃z

= hÎ4lxxxxlzzzz− s5lxxzz
2 − 2lxxzzlxzxz+ lxzxz

2 d
12lxzxzlzzzz

. s11d

We note that the range is only meaningful when,2.0; how-
ever, this quantity can become negative since the term in
parentheses in Eq.s11d is always positive. When the range,
becomes imaginary, this indicates that there is a destabiliza-
tion of the smooth exponential decay. This may signify the
appearance of oscillatory behavior or in some cases, long-
range order. The response of the system is related to the
amplitude of thermal fluctuations that diverges when,2 be-
comes negative:

kuuqu2l . h2l̃x + l̃z

l̃xl̃z

kBT

1 + q2,2 . s12d

In our case, higher orders in the expansion inqh must be
considered before one can reach any conclusions about the
existence of an instability when,2,0. However, these
higher order termsse.g., terms inq4d are often positive and
stabilizing and we do not expect any instabilities to take
place in the systems we consider. Equations12d nonetheless
suggests that the system may show an unusually large re-
sponse to surface perturbations with wavelengthsÎ−,2: this
wavelength corresponds to a damped resonance if there is
no further instability. Isotropic materials exhibit such a
regime whenn→1/2 si.e., for rubberlike materialsd. An-
isotropic materials can reach this regime when either the

moduluslxxzz or the shear coefficientlxzxz are large. This
resonance and the associated large response is probably
not relevant for biological systems: the resonant wave-
length is of order of the thickness of the material, that is,
of the order of a few nanometers in the case of grafted
molecules, whereas the applied stresses are usually in the
micrometer range.

The previous analysis relies on the assumption that the
film is grafted to a rigid substrate, where no displacement
takes place on the bottom surface of the film. However, cells
develop focal adhesion when the substrate is functionalized
with various molecules that can result in either strong or
weak grafting condition. It is therefore important to relate the
elastic properties of the substrate to the stress-induced defor-
mations. Obviously, if the substrate consists of a three-
dimensional elastomer, the finite thickness effects previously
discussed are no longer consistent since the surface stress
now applies to an effective semi-infinite elastic medium.
However, if the surface treatment consists of a coating of
molecular thickness that, instead of grafting the film to the
surface, causes adhesion via a finite, harmonic adhesive po-
tential, all the former results still hold, but with some modi-
fications[11].

(i) Both the amplitude and the range of force-induced
displacements become larger as the strength of the adhesive
potential decreases: the effective screening length,, Eq.
(11), increases with softer boundary condition on the bottom
surface, leading to a larger response.

(ii ) However, the amplitude of the variations of surface
density can be shown to decrease with the strength of adhe-
sion. In the limit of very low adhesion strength, surface
stresses indeed translate the elastic film but do not deform it;
the density does not vary.

In conclusion, although semi-infinite, elastic media trans-
mit long-range stresses, the effects of the finite thickness of
the layer dramatically reduces this range, transforming the
usual power law to an exponential decay whose length scale
is given roughly by the balance of the compression and the
shear moduli. Releasing the constraint of strong grafting con-
dition and considering instead a finite adhesion energy modi-
fies the range of the exponential decay but does not change
the qualitative behavior of the stressed elastic film. Finite
thickness also gives rise to the possibility of a regime where
the system shows an unusually large response to surface
forces(i.e., an elasticity-induced “resonance”); however the
relevant wavelength at which this response is large is of or-
der of the thickness of the elastic layer. These predictions
could be tested experimentally on polyelectrolyte multilay-
ers, whose elastic moduli can be varied by tuning the ionic
strength[19]. The predicted large amplitude deformation re-
gime for Poisson ration&1/2 [see Eqs.(16)–(18) for the
isotropic case] may then be seen with such materials.

IV. SURFACE ELASTIC ANISOTROPY EFFECTS

Taking into account two-dimensional(x andy) variations
of the deformations and the surface stresses adds significant
technical complexity to the problem but does not change the
qualitative effect of finite thickness-induced short-range elas-
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tic interactions. However, several novel aspects appear such
as an effective, in-plane shear modulus that arises from the
boundary conditions. We first describe this boundary-induced
coupling effect and evaluate its consequences for the surface
deformations. In Sec. IV B, we focus on anisotropic elastic
media and predict the influence of elastic anisotropy on the
symmetry of the response. When considered in the context of
cell adhesion, these results suggest that the observed aniso-
tropic growth of sheared adhesive junctions[5] may simply
originate from the force-induced, anisotropic deformations of
the junctions.

A. Boundary-induced strain coupling

As mentioned before, a fluid monolayer grafted to a sur-
face has no intrinsic, direct coupling between the two planar
directionsx andy; the elastic energy corresponds to Eq.(1),
where lxxyy=lxyxy=0. But even without any direct elastic
coupling ofx and y, a force in thex direction can induce a
deformation in they direction because of the grafting surface
boundary condition of zero displacement. Indeed, thex andy
direction strains are indirectly coupled through the boundary
condition atz=0 and via the shear modulilxzxzandlxxzz. A
variation of ux generates a responseuzz, but uzz is also
coupled touyy due to the general shear modulusy-z shear
modulus (the same argument holds foruxz and uyz). This
indirect coupling is responsible for an atypical response of
the material: a surface shear stress induces an in-plane com-
pression at the front edge of the stressed region as presented
in Fig. 2. However this effect is negligible when the stiffness
of the molecules is large(lzzzz larger than the other elastic
coefficients), a situation that can occur in a layer of short
molecules grafted to a surface, such as proteins involved in
cell-matrix junctions. In such cases, surface forces do not
stretch the molecules, which instead respond as solid blocks:
uzz.0. No indirect coupling takes place and a surface shear
stress only induces a polarized displacement in the direction

of the force. For symmetry reason, the displacementux in the
direction of the force is the same on both sides of the stressed
region. But we expect the variations of the surface density of
the material to be antisymmetric as it is related to the gradi-
ent of the displacementux. The relevant parameter that de-
scribes the polarization of the response of a layer of proteins
to surface shear forces is therefore not the displacement but
the variation of surface density:

dF

F
= − suxx + uyyd.

Before focusing on anisotropic elastic media that are relevant
to the description of adhesive junctions involved in cell ad-
hesion, we first illustrate the indirect coupling effects by
looking at the spatial deformation induced by a tangential

force fWsx,yd= fsx,ydeWx that stresses the surface of anisotro-
pic elastic, thin film. We consider this particular casesas
opposed to the anisotropic thin filmd in order to simplify the
presentation. For the isotropic case, the calculation can be
performed in a simple and instructive manner. The situation
of isotropic media is however slightly different from an an-
isotropic thin film or fluid monolayer: in the isotropic case, a
direct coupling exists between the planar directionsx andy
even in the bulk material; that is, the shear modulilxyxy and
lxxyy are nonzero even in the bulk. This adds to the indirect
coupling between thex andy directions induced by the finite
thickness effects as described above. We nonetheless show
that both contributionssthe direct and the indirect onesd com-
pete; based on this, we can deduce the response of an elas-
tically anisotropic, grafted layer with no direct coupling be-
tween x and y, without performing this technically more
complex calculation.

Using the same procedure as in the preceding section, we
consider the energy of an isotropic film subject to a fixed
surfacestrain uWsx,y,hd; later on, we relate this strain to the
surface force that induces the surface strain. The energy is
then written as

E =
E

2s1 + ndh
E d2q

2p
F uuqx

h u2

2
f1 + q2h2sl̃1 + l̃2 cos 2udg

+
uuqy

h u2

2
f1 + q2h2sl̃1 − l̃2 cos 2udg+

uuqz
h u2

2
sl̃z + q2h2l̃z8d

+
l̃xy

2
q2h2 sin u cosusuqx

h ūqy
h + ūqx

h uqy
h d

+
iqh

2
l̃xzfcosusuqx

h ūqz
h − ūqx

h uqz
h d + sin usuqy

h ūqz
h

− ūqy
h uqz

h dgG , s13d

with the renormalized elastic coefficients:

l̃1 =
23 − 56n + 32n2

48s1 − nds1 − 2nd
, l̃2

7 − 8n

48s1 − nds1 − 2nd
, l̃xy = 2l̃2,

s14d

FIG. 2. Response due to the direct(a) and indirect(b) coupling
betweenx and y. The z component of the deformation is not
represented.
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l̃z =
2s1 − nd
1 − 2n

, l̃z8 =
s3 − 4nds1 − 4nd

12s1 − 2nd2 , l̃xz=
4v − 1

2s1 − 2nd
,

s15d

wherel̃xy is the combination of both sources of direct cou-

pling betweenx andy, lxyxy andlxxyy. Contrary tol̃xz which
can change sign because of the opposite action of the
compression-induced shearlxxzzand the shear moduluslxzxz,

l̃xy is always positive. Indeed, both contributions to the shear
lxxyy andlxyxy favor the same final state where the material
is expanded in thex-y plane at the front of the perturbation
and compressed at the rearssee Fig. 2d. The minimization of

Eq. s13d when a tangential forcefW= fsx,ydeWx is applied to the
surface leads to the following deformation after Fourier in-
versionsin the limit r @,d:

uxsr,hd .
2s1 + ndf

E
*

h3

3,4Îp

2

e−r/,

Îr/,
S1 +

1 + 6n

2s1 − ndcos2fD ,

s16d

uysr,hd .
2s1 + ndf

E
*

h3

,4Îp

2

e−r/,

Îr/,
cosf sin f

1 + 6n

6s1 − nd
,

s17d

uzsr,hd .
2s1 + ndf

E
*

h2

,3Îp

2

e−r/,

Îr/,
cosf

4n − 1

4s1 − nd
. s18d

In this expression,sr,fd are the polar coordinates on the
surface of the medium while * indicates a convolution as
defined by Eq.s9d but extended to two dimensions. These
formulas show the same trend as we found in the preceding
section where only one surface dimension was considered:
the deformation decays exponentially on a length scale,,
defined here as,=hÎs23−48nd / f24s1−nds1−2ndg. Note
that , is still not well defined close ton=0.5 where one
must include terms higher order in the wave vector. Our
expansion is indeed not precise enough to explore this
region, but the previous stability analysis still holds and
predicts an increased sensitivity of the film to perturba-
tions with wavelengths close toÎ−,2 when the elastic pa-
rameters are such that,2,0. The deformations for this
two-dimensional case are not isotropic in thex-y plane,
but the anisotropy of the deformation is insensitive to the
film thickness. The deformation described by Eqs.
s16d–s18d shows the same angular dependance as one
finds for surface stresses on a semi-infinite elastic me-
dium f12g. The in-plane displacement takes place mainly
in the direction of the forcesf=0d, similar to the behavior
in a semi-infinite medium. As a consequence, the varia-
tions of the densitydF /F=−uxx are also highly aniso-
tropic. A localized force, mathematically represented by a
Dirac d function, leads thus to

d F

F
.

F

E
Sh

,
D3s1 + nds3 + 4nd

6s1 − nd
e−r/,

Îr/,
cosf s19d

to first order in, / r. The dependence on cosf in Eq. s19d
predicts a highly anisotropic response to force: the density
mainly varies in the direction of the force and not perpen-
dicular to it. As emphasized in Sec. IV B, specific aniso-
tropic elastic properties of materials can enhance this fea-
ture and lead to an even more directional response, where
uy is completely negligible. This anisotropic deformation
is the effect we suggest as the origin of the polarized
biochemical response of cell adhesion under stress, where
new proteins aggregate to the adhesive junction specifi-
cally at the front edge.

Although it is not apparent in Eq.(17), the sign of the
prefactor ofuy comes from the competition between the di-

rect and the indirect coupling betweenx and y: uy~ sl̃xyl̃z

− l̃xz
2 d / l̃z. The direct couplingl̃xy is responsible for the in-

tuitive response: a displacement of a spot in the positivex
direction expands the elastic medium in they direction in
front of the spotsx.0d and a compression in the negativex
direction. The effect of the indirect coupling causes a nonin-
tuitive deformation due to the ability of the material to use
thez direction to move material toward the stressed region at
the front edge and away from it at the rear(Fig. 2); a local
force induces a compression in thex-y plane at the front edge
of the stressed region and expansion behind it. Finally, the
direct and indirect couplings betweenx and y compete so
that a deformation along thex direction is expected to induce
a smaller response in they direction for an isotropic material
compared with an anisotropic, thin fluid layer, where no di-
rect coupling balances the finite thickness-induced shear de-
formation.

B. Elastic anisotropy effects on deformations

The situation for anisotropic, fluid grafted layers can be

deduced from the isotropic case. Sincel̃xy=0, we expect the
material to be compressed in thex-y plane at the front edge
of the perturbation, contrary to the intuitive expectation[Fig.
2, case(b)]. The sign of the displacement inz is as before
dependent on the relative contribution of the shear coeffi-
cientslxxzz andlxzxz and will lead either to an expansion in
the z direction whenlxxzz.lxzxz or to a compression in the
opposite case. A situation of interest that can be easily pre-
dicted is the very anisotropic case where stretching the
grafted molecules is very costly energetically:lzzzzis larger
than any other elastic coefficient. As mentioned before, this
assumption is relevant to describe layers of proteins bounded
to a surface such as the ones involved in cell-matrix junc-

tions. Becauselzzzz is large, a surface forcefWsx,yd
= fsx,ydeWx results in negligible stretching of the molecules in
the z direction, and the indirect coupling between the in-
plane directions that arises from finite thickness effects be-
comes negligible. Due to this anisotropy, the force-induced
displacement is, to a good approximation, in the direction of
the force(uy anduz scale like 1/lzzzz):
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uxsx,y,hd .
fsx,ydh

lxzxz
* p

e−uxu/,

,
dsyd, s20d

where,=Îlxxxx/3lxzxz is the typical range of deformation
and dsyd is the one dimensional Dirac function. Equation

s20d shows that for a constant forcefW= feWx applied on a
rectangle of size 2Lx32Ly, the deformation is only sig-
nificant at the edges normal to the force whereas the lat-
eral sides are perturbed in a negligible way. This aniso-
tropic variation of the surface density shows how the
boundary conditions of surface attachment result in a
shearlike response of an initially fluid layer to a direc-
tional surface stress. Outside of, but close to the stressed
rectangle,

dF

F
= − suxx + uyyd .

f h

lxzxz,
fHsLy − yd

− Hs− Ly − ydgsinh
Ly

,
e−uxu/,sgnsxd, s21d

whereH is the step functionsalso called Heaviside functiond.
When considered in the context of biological cell-matrix
junctions, Eq.s21d shows that a constant surface force ap-
plied onto a layer of stiff, grafted molecules induces an in-
plane compression of range, at the front of the layer as well
as an in-plane expansion of range, at the back edge of the
stressed zone; negligible deformations are expected on the
sides. Adhesive junctions are indeed observed to respond to
forces with an increase of their size in a highly anisotropic
manner; new proteins aggregate at the front edgef5g and not
at the back nor the sides. This behavior is consistent with our

suggestion that the anisotropic elastic response of the thin
layer of proteins to the surface stresses originating from
cytoskeleton-induced cell contractility triggers spatially lo-
calized biochemical reactions; the anisotropic change in the
density of the protein layer due to the surface stress may
make it more favorable for additional proteins to aggregate at
the front of the layer but not at the sides or back. This pro-
vides a link between the elasticity-induced in-plane compres-
sion to the biochemical response.

In conclusion, surface stresses applied to grafted layers of
molecules create short-range perturbations whose range is
limited to the film thickness. Finite thickness and the grafting
boundary condition induce an effective shear response to sur-
face stresses, so that even fluidlike layers become sensitive to
shear. A localized surface stress also induces perturbations in
directions perpendicular to the stress even for cases where
there are no direct elastic coupling between thex and y di-
rections inthe bulk system. On the contrary, for cases where
the system possesses an intrinsicx-y shear modulus, the sur-
face grafting boundary conditiondecreasesthe effect of the
direct elastic coupling that exists for isotropic elastic media,
leading to a more directional perturbation. Both the short-
range effect of stress forces and the boundary-induced direc-
tionality may explain the mechanosensing observed in bio-
logical cell adhesion as a local, anisotropic elastic process
that generates a highly directional, biochemical response.
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